# FUMI 理論による粉末X線回折の精度推定

明治製菓 北原 進一

#### 1. 序論

#### 1.1 医薬品開発における問題点

近年、医薬品の候補物質として創出される 化合物には、分子構造の複雑化及び分子量の 増大傾向が認められている。複雑な分子構造 は、結晶多形など結晶学的な問題の原因とな る他、分子量の増加とともに溶解性の低下の 原因ともなり得る。結晶多形などは、原薬の 品質保証を困難にさせるだけではなく、原薬 及び製剤の製造工程を複雑化させる原因に

もなる。また溶解性の低下は、消化管内にお ける薬物の吸収性に直接影響を及ぼす。さら に、これらは原薬や製剤を製造する際のハン ドリングに影響を及ぼすこともあるため、製 造施設や製造コストなど、開発に直結する問 題となり得る。

# 1.2 難溶性医薬品の開発における、解決 策としての非晶質化

難溶性医薬品の経口用製剤開発において は、溶解性及び溶出性の向上が非常に大きな 課題となる。結晶性薬物の溶解性向上を図る 手段として、噴霧乾燥や凍結乾燥といった方 法による非晶質化が有効であるとされてお り、実際に多くの医薬品の製剤開発に利用さ れている。

非晶質は、固体状態のうち分子が無秩序に 存在している状態であり、結晶と比較してポ テンシャルエネルギーが高く不安定な状態 にある。その結果として化学的安定性が低下 すると同時に溶解性の向上が見込まれる。

製剤開発に非晶質化を採用した場合、非晶 質の品質が製剤の溶解性及び溶出性に大き く影響を及ぼすことが考えられる。非晶質の 品質を左右する因子として、非晶質調製時に 残留する結晶成分や、保存時における非晶質 から結晶への状態変化などが考えられる。こ れらの適正な管理が、製剤の品質を確保する 上で重要な要件となる。

#### 1.3 非晶質の評価法

非晶質の物理化学的性質の検討方法とし て、偏光顕微鏡観察、粉末 X 線回折測定、熱 分析、IR スペクトル測定、ラマンスペクトル 測定、固体 NMR スペクトル測定などが利用 されている。このうち粉末 X 線回折測定は、 結晶状態の直接的な評価が可能なことと、測 定操作が簡便なことから、品質試験として汎 用されている。非晶質の品質を左右する因子 について、粉末 X 線回折測定を用いた品質試 験によって規定する場合、試料中における結 晶成分の有無についての評価が行われる。評 価に当たっては、その判定基準を設定するた めにも、非晶質試料中の結晶成分の検出限界 に関する検討を行う必要がある。しかし、粉 末X線回折測定の定量性は一般に高くない といわれており、特に非晶質中に微量に含ま れる結晶成分については、結晶由来の回折ピ ークの有無を、目視によって判定するという 定性的な評価にとどめる場合もある。そのた め、粉末X線回折測定による品質試験法の開 発に当たっては、多くのくり返し測定による 検討が不可欠となり、多くの時間と労力が必 要となっている。

#### 1.4 FUMI 理論

測定結果における誤差の主原因がベース ラインノイズである場合、このベースライン ノイズを数学的手法を用いてシミュレート することができれば、測定における分析精度 を推定することができる。

**FUMI**(Function of Mutual Information)理論 では、確率論的視点からこのシミュレーショ ンを行う。その結果、統計学的手法よりも少 ない労力で、より信頼性の高い分析精度を推定することができるとされている。HPLCなどへ適用した場合、1回の分析結果からFUMI理論を用いて推定した分析精度は、数十回の分析結果から統計学的手法を用いて推定した分析精度に、匹敵する信頼性を持つとされている。

#### 1.5 研究の目的

本研究の主目的を、粉末 X 線回折測定の精 度推定に対する、FUMI 理論適用の可否につ いての検討とした。そのためのステップとし て、粉末 X 線回折測定におけるノイズの性質 を調べ、FUMI 理論による解析を実施した。

次に医薬品開発における実用を想定し、製 剤に見立てた混合試料を用いた検討を実施 した。

#### 2. 実験

#### 2.1 試料調製

#### 2.1.1 非晶質試料の調製

試料として、水溶液を凍結乾燥することに よって非晶質化できるものを用いることと した。そこで、製剤原料として多用されてい るα-ラクトース(ナカライテスク;以下、 ラクトース)及びオリゴ糖である D-(+)-ラフ ィノース(ナカライテスク;以下、ラフィノ ース)を採用した。

ラクトース及びラフィノースの 5%水溶液 について凍結乾燥を行い、非晶質試料として 使用した。

#### 2.1.2 製剤シミュレーション用試料の調製

#### 2.1.2.1 添加剤混合物調製

経口用製剤における標準処方とされてい る乳糖-デンプン系処方を採用し、表 2.1.1 に従って調製した。乳糖はDMV製Pharmatose 200M、コーンスターチは日本食品加工製日食 コーンスターチ(W)、結晶セルロースは旭化 成ケミカルズ製セオラス PH-101、ヒドロキシ プロピルセルロース(以下、HPC)は日本曹 達製 HPC-L をそれぞれ使用した。これらにつ いて、ボルテックスミキサーを用いて10分 間混合し、添加剤混合物とした。

表 2.1.1 添加剤混合物の処方

| 添加剤     | 混合量    | 混合比率  |
|---------|--------|-------|
| 乳糖      | 7.72 g | 69.5% |
| コーンスターチ | 2.88 g | 25.9% |
| 結晶セルロース | 0.40 g | 3.6%  |
| HPC     | 0.10 g | 0.9%  |

#### 2.1.2.2 主薬成分混合

主薬成分を選択するに当たっては、添加剤 混合物に由来する回折ピークが現れない角 度範囲に、分離度の良い回折ピークを示すこ とを必要条件とし、ニフェジピン(ナカライ テスク)及びプロベネシド(ナカライテスク) を選択した。

混合性を向上させるため、これら1gについて5分間、メノウ乳鉢で粉砕を行った。この粉砕物を、添加剤混合物との重量比が5%、10%及び20%になるように添加し、ボルテックスミキサーを用いて10分間混合した。

#### 2.2 粉末 X 線回折測定

各種検討項目に合わせて、以下の実験条件 により粉末 X 線回折測定を行った。

> 装置 リガク RINT2100 実験条件 1 X線: CuKα1 管電圧:40 kV 管電流:40 mA スキャンステップ:0.002° スキャンスピード:0.4°/min 測定範囲:2θ=3-15° 走査軸:2θ/θ データポイント数:6000

実験条件 2

.

X 線: CuKα1 管電圧:40 kV 管電流:40 mA スキャンステップ:0.002° スキャンスピード:0.4°/min 測定範囲:2θ=3-40° 走査軸:2θ/θ

実験条件3

X 線: CuKα1 管電圧: 40 kV 管電流: 20 mA スキャンステップ: 0.02° スキャンスピード: 4°/min 測定範囲: 2θ = 3 - 40° 走査軸: 2θ/θ

# 2.3. FUMI 理論による解析

#### 2.3.1 ノイズの抽出

粉末X線回折測定によって得られる粉末X 線回折パターンを、試料に由来するパターン と装置に由来するノイズパターンとの和で あると仮定し、装置に由来するノイズを抽出 することを考えた。図 2.3.1 にノイズ抽出の プロセスを示した。同一試料について測定し た2つの回折パターンを相互に差し引きした とき、残るパターンがホワイトノイズであれ ば、この処理によって抽出されるノイズパタ ーンが装置由来のノイズパターンの性質を 反映していると考えられる。





ホワイトノイズの大きさは、隣接するデー タポイントのノイズに影響されない独立な ものである。そのため、装置由来のノイズが ホワイトノイズとすると、その確率論的な性 質を予測することは容易である。ただしこの ような処理を施した場合、式(1)に示した誤差 の伝播法則に従って処理後の誤差は増幅さ れる。

$$SD_0^2 = SD_1^2 + SD_2^2$$
 式 (1)

式(1)において、SD<sub>1</sub>及びSD<sub>2</sub>は独立した誤 差要因に起因する誤差のSD、SD<sub>0</sub>はすべての 誤差要因を含んだ誤差のSDである。同一の 測定試料を2度測定した場合、SD<sub>1</sub>及びSD<sub>2</sub> はくり返し測定によって得られる装置由来 のノイズのSDに、SD<sub>0</sub>は差し引き処理によ って抽出されるノイズのSDにそれぞれ相当 する。SD<sub>1</sub>とSD<sub>2</sub>は等しいことから、式(2)に 従ってSD<sub>0</sub>は、SD<sub>1</sub>の $\sqrt{2}$ 倍となる。

#### 2.3.2 ノイズ解析

自然界における多くのノイズは 1/f ゆらぎ と呼ばれる性質を持っている。1/f とは、ノイ ズを周波数(f)とノイズ強度とのプロットで あらわすパワースペクトルからつけられて いる。ノイズが 1/f ゆらぎの性質を持つ場合、 ノイズ強度と周波数は反比例の関係となる。

分析装置などが発生するノイズも 1fゆら ぎに似た性質を示すことがある。ノイズの性 質から分析精度を推定する場合、ノイズの確 率論的性質について検討することとなる。し かしながら、1fゆらぎを直接解析することは 数学的に非常に難しいことに加え、ノイズが 1fゆらぎの性質を必ずしも示すとは限らな い。FUMI 理論においては、直接 1fゆらぎを 用いてノイズの確率論的性質を評価するこ とはせずに、1 $f^0$ ゆらぎであるホワイトノイ ズと 1 $f^2$ ゆらぎであるマルコフ過程との和 として近似し評価を行う。ホワイトノイズが 直前のデータポイントにおける観測値に影 響を受けないノイズであるのに対し、マルコ フ過程はこの影響を受けるノイズである。横 軸に周波数 f、縦軸にノイズ強度の、それぞ れ対数をとったパワースペクトルにおいて、 ホワイトノイズは横軸と水平の直線、マルコ フ過程は右肩下がりの直線となる。パワース ペクトル P(f)は式(2)及び式(3)によって書き 表すことができる。

$$P(f) = \frac{m^2}{1 - r^2} \times \frac{2\alpha}{\alpha^2 + 4\pi^2 f^2} + w^2 \qquad \vec{x}(2)$$

$$\alpha = \frac{1-r}{\Delta t} \qquad \qquad \vec{\mathbf{x}}(3)$$

これらの式において、fは周波数、Δt はデ ータ取込間隔、m はマルコフ過程の SD、r は マルコフ過程の自己相関係数、w はホワイト ノイズの SD をそれぞれ示している。式(2)に おける第一項がマルコフ過程による寄与、第 二項がホワイトノイズによる寄与をそれぞ れ示している。パワースペクトルの形が、分 析におけるノイズの確率論的解釈の際に有 効な評価材料となる。

本研究においては、研究用解析ソフトウェ ア TOCO(林、松田)を用いてノイズ解析を 実施した。パワースペクトル算出に当たって、 高速フーリエ変換(以下、FFT)に用いるデ ータポイントは 2048 を基本とした。

#### 2.3.3 精度プロファイル

図 2.3.2 に FUMI 理論による検出限界の算 出プロセスを示した。分析装置の相対標準偏 差(以下、RSD とする)と濃度との関係をプロッ トした図を精度プロファイルと呼ぶ。FUMI 理 論においては、抽出したノイズ (Corrected Noise)と結晶の回折パターン(Signal)を用い、 計算によって精度プロファイルと検出限界相 当の推定図を得ることができる。

RSD を算出するためには、結晶の回折パタ ーンからシグナルパラメータを得る必要がある。 ノイズパラメータ(m、r、w)については、実測さ れるパワースペクトルに、最小二乗法により式 (2)で表される理論パワースペクトルを近似さ せることで求める。これらのパラメータから検量 線を作成し、ノイズのRSDと濃度との関係を求 める。



図 2.3.2 検出限界算出プロセス

#### 3. 結果及び考察

# 3.1 粉末 X 線回折測定への FUMI 理論の 適用について

FUMI 理論の粉末 X 線回折測定への適用可 能性について検討するために、粉末 X 線回折 測定における装置のノイズ特性について検 討を行った。

非晶質試料の粉末 X 線回折パターンは、非 晶性散乱、バックグラウンド及び装置由来の ノイズパターンの和と考えられる。そこで、 凍結乾燥により非晶質化したラクトースを 用いて測定試料を調製し、同一の測定試料を 用いて2度くり返し測定を行った。得られた 粉末 X 線回折パターンを用いて、差し引き処 理をすることにより、ノイズの抽出を試みた。 抽出したパターンに対して、TOCOによるノ イズ解析を行い、その特徴について評価を行った。

図 3.1.1 に非晶質ラクトースの粉末 X 線回 折パターンを、図 3.1.2 に差し引き処理によ り得たパターンを示した。また、図 3.1.3 に 差し引きしたパターンのパワースペクトル を示した。差し引き処理によって抽出したノ イズはホワイトノイズに似たパターンを示 した。



図 3.1.1 非晶質ラクトースの粉末 X線 回折パターン(実験条件 1)



図 3.1.2 差し引き処理によって抽出し たパターン



図 3.1.3 パワースペクトル(両対数表示)

FUMI 理論では、ランダムノイズの確率論 的性質をパワースペクトルによって評価す る。図 3.1.3 において、ジグザクの線は抽出 したノイズから得た実際のパワースペクト ルを、太い直線は最小二乗法により近似した 理論パワースペクトル(式(2))を示している。 理論パワースペクトルの近似式において、マ ルコフ過程の SD である m の寄与は、ホワイ トノイズの SD である m の寄与は、ホワイ トノイズの SD である w の寄与に比べて、無 視できるほど小さかった。以上より、差し引 き処理によって得られたノイズパターンは ホワイトノイズで近似され、粉末 X 線回折測 定における装置由来のノイズは、ホワイトノ イズで近似できると考えられた。

FUMI 理論では、ノイズパラメータを用い て測定におけるノイズパターンをシミュレ ートすることにより、ノイズの SD を推定す る。粉末 X 線回折測定においてもホワイトノ イズで近似できることから、ノイズの SD を 推定することは可能であると考えられる。以 上の結果から、粉末 X 線回折測定に対する FUMI 理論の適用は可能であると考えられた。

# 3.2 ノイズ解析における FFT 領域の影響について

有機化合物の場合、結晶に由来する回折ピ ークの出現範囲は、概ね 20 = 40°以下と考え られる。そこで、測定範囲を 20 = 3 - 40°に設 定し、非晶質ラクトース及び非晶質ラフィノ ースを用いて測定を行った。同一試料を2度 くり返し測定することを1サイクルとして合 計3サイクルを行い、1サイクルごとにノイ ズ抽出を行った。データに対する信頼性向上 の理由から、FFTに用いる領域を1024デー タポイント以上としてノイズ解析を行った。

表 3.2.1 FFT 領域(実験条件 2)

| データポイント数 | 角度換算   |
|----------|--------|
| 4096     | 8.192° |
| 2048     | 4.096° |
| 1024     | 2.048° |

ノイズ解析の結果、FFT 領域の大小及び角 度範囲に関わらず、マルコフ過程に関するノ イズパラメータであるm及びrはゼロで近似 され、ノイズパターンはホワイトノイズで近 似できることが示唆された。以下に実験結果 のうち、FFT 領域を 2048 データポイントと したものを示した。



図 3.2.1 非晶質ラクトースの粉末 X線 回折パターン(実験条件 2)



図 3.2.2 差し引き処理後のノイズパターン (試料:非晶質ラクトース)

| FFT 領域 20(°)    | w       | т | r |
|-----------------|---------|---|---|
| 3.000 - 7.094   | 18.2063 | 0 | 0 |
| 5.048 - 9.142   | 18.0717 | 0 | 0 |
| 7.096 - 11.190  | 20.4200 | 0 | 0 |
| 9.144 - 13.238  | 23.5125 | 0 | 0 |
| 11.192 - 15.286 | 27.5395 | 0 | 0 |
| 13.240 - 17.334 | 33.8542 | 0 | 0 |
| 15.288 - 19.382 | 40.4418 | 0 | 0 |
| 17.336 - 21.430 | 44.0060 | 0 | 0 |
| 19.384 - 23.478 | 41.8574 | 0 | 0 |
| 21.432 - 25.526 | 37.0893 | 0 | 0 |
| 23.480 - 27.574 | 33.4966 | 0 | 0 |
| 25.528 - 29.622 | 30.3374 | 0 | 0 |
| 27.576 - 31.670 | 28.1836 | 0 | 0 |
| 29.624 - 33.718 | 27.6262 | 0 | 0 |
| 31.672 - 35.766 | 27.5968 | 0 | 0 |
| 33.720 - 37.814 | 27.0486 | 0 | 0 |
| 35.768 - 39.862 | 26.5716 | 0 | 0 |
|                 |         |   |   |

表 3.2.2 ノイズ解析結果(ラクトース)

スキャンステップ:0.002°

FFT 領域: 2048 データポイント



図 3.2.3 非晶質ラフィノースの粉末 X 線回折パターン(実験条件 2)



図 3.2.4 差し引き処理後のノイズパターン (試料:非晶質ラフィノース)

表 3.2.3 ノイズ解析結果(ラフィノース)

| FFT 領域 2θ(°)    | W       | т | r |
|-----------------|---------|---|---|
| 3.000 - 7.094   | 19.5241 | 0 | 0 |
| 5.048 - 9.142   | 19.0428 | 0 | 0 |
| 7.096 - 11.190  | 21.3742 | 0 | 0 |
| 9.144 - 13.238  | 26.6639 | 0 | 0 |
| 11.192 - 15.286 | 33.8421 | 0 | 0 |
| 13.240 - 17.334 | 39.1681 | 0 | 0 |
| 15.288 - 19.382 | 42.7286 | 0 | 0 |
| 17.336 - 21.430 | 43.7637 | 0 | 0 |
| 19.384 - 23.478 | 41.1592 | 0 | 0 |
| 21.432 - 25.526 | 37.3611 | 0 | 0 |
| 23.480 - 27.574 | 33.3483 | 0 | 0 |
| 25.528 - 29.622 | 30.8179 | 0 | 0 |
| 27.576 - 31.670 | 30.7617 | 0 | 0 |
| 29.624 - 33.718 | 29.3372 | 0 | 0 |
| 31.672 - 35.766 | 27.1920 | 0 | 0 |
| 33.720 - 37.814 | 26.6070 | 0 | 0 |
| 35.768 - 39.862 | 26.3324 | 0 | 0 |

スキャンステップ: 0.002°

FFT 領域: 2048 データポイント

FFT 領域の大小に関わらず、ホワイトノイ ズで近似できることが示されたが、FFT 領域 を狭く設定した場合、解析に用いる角度範囲 によっては、ホワイトノイズの SD である w の大きさが変化するという現象が認められ た。これは、ノイズパターンを抽出するため に使用したハローパターンにおける回折強 度の影響を受けたためと考えられた。

# 3.3 製剤への応用について

# 3.3.1 添加剤混合物の粉末 X 線回折パター ン

添加剤混合物の構成成分及び添加剤混合 物の粉末 X 線回折パターンを、図 3.3.1 から 図 3.3.5 に示した。添加剤混合物の粉末 X 線 回折パターンは、混合比率 69.5%を占める乳 糖の粉末 X 線回折パターンとほぼ同じもの となっていた。各回折ピークは添加剤混合物 の構成成分に由来するものであり、混合によ る新たな回折ピークの出現は認められなか った。



図 3.3.1 乳糖の粉末 X 線回折パターン (実験条件 3)











図 3.3.4 HPCの粉末 X 線回折パターン (実験条件 3)





#### 3.3.2 ノイズ解析

添加剤混合物の粉末 X 線回折パターンの 拡大図を図 3.3.6 に示した。20=3~10°の範 囲に回折ピークを示さないことが確認され た。3.1 節の結果から、回折パターンがハロ ーパターンとなる場合には、差し引き処理に よって測定に由来するノイズを抽出できる と考えられている。そこで、20=3~10°の範 囲に対して、ハローパターンと同様な扱いが できるかどうかを確認する事とした。



# 図 3.3.6 添加剤混合物の粉末 X 線回折 パターン(実験条件 3: 拡大)

添加剤混合物について 20=3~15°の範囲 で測定(実験条件1)した粉末 X 線回折パタ ーンを図 3.3.7 に、差し引き処理によって抽 出されたパターンを図 3.3.8 にそれぞれ示し た。



# 図 3.3.7 添加剤混合物の粉末 X 線回折 パターン(実験条件 1)



# 図 3.3.8 差し引き処理によって抽出さ れたパターン

差し引き処理によって抽出されたパター ンのうち、添加剤混合物由来の回折ピークが 認められなかった角度範囲のデータを用い て、FFTを2048ポイントとしてノイズ解析 を行った。ノイズ解析によって得られたパワ ースペクトルを図3.3.9に示した。理論パワ ースペクトルは横軸と平行な直線となって おり、ホワイトノイズで近似できることが示 唆された。これより、添加剤混合物の粉末 X 線回折パターンのうち、回折ピークを示さな い角度範囲においては、ハローパターンの場 合と同様に、差し引き処理によってノイズを 抽出できると考えられた。

なお、基になる粉末 X 線回折パターンにお いて、添加剤混合物に由来する回折ピークを 認める角度範囲においては、差し引き処理に よってノイズ以外の成分が抽出されており、ノ イズ解析には適さないと考えられた。



#### 図 3.3.9 添加剤混合物のパワースペクトル (両対数表示)

#### 3.3.3 主薬成分の選択

添加剤混合物の粉末 X 線回折パターンに おいて、20=3~10°の範囲に回折ピークが認 められなかった。従って主薬成分を選択する 場合、この角度範囲に分離度の良い回折ピー クを示すものを選択する必要があると考え た。選択に当たっては 20 種以上の薬物に対 して粉末 X 線回折測定を実施し、前述の条件 を満足するニフェジピン及びプロベネシド を採用する事とした。図 3.3.10 にニフェジピ ンの、図 3.3.11 にプロベネシドの粉末 X 線 回折パターンを示した。いずれも 20=3~10° に分離度のよい回折ピークを示しており、シ ミュレーションにおける主薬成分として適 していると考えられた。



図 3.3.10 ニフェジピンの粉末 X 線回 折パターン(実験条件 3)



図 3.3.11 プロベネシドの粉末 X 線回 折パターン(実験条件 3)

3.3.4 製剤のシミュレーション

#### 3.3.4.1 ニフェジピン

主薬成分にニフェジピンを用い、重量比が 5%、10%及び 20%になるように添加剤混合物 と混合した。実験条件 1 により、各種混合物 について 6 回くり返して粉末 X 線回折測定を 行った。図 3.3.12 に 20%混合物の粉末 X 線 回折パターンを示した。20 = 8.1°付近の回折 ピークをシグナル解析の対象ピークとする 事とした。



図 3.3.12 ニフェジピン 20%混合物の粉末 X 線回折パターン(実験条件 1)

図 3.3.13 にシグナル解析により得た精度プロファイルを示した。くり返し測定から得た RSD と FUMI 理論により算出された RSD は近い値を示した。



図 3.3.13 **精度プロファイル (ニフェジピン)** ●は実測した RSD(%)、実線は FUMI 理論によ り算出された RSD(%)

#### 3.3.4.2 プロベネシド

主薬成分にプロベネシドを用い、重量比が 5%、10%及び 20%になるように添加剤混合物 と混合した。実験条件 1 により、各種混合物 について 6 回くり返して粉末 X 線回折測定を 行った。図 3.3.14 に 20%混合物の粉末 X 線 回折パターンを示した。20 = 9.6°付近の回折 ピークをシグナル解析の対象ピークとする 事とした。



# 図 3.3.14 プロベネシド 20%混合物の粉末 X 線回折パターン(実験条件 1)

図 3.3.15 にシグナル解析により得た精度プロファイルを示した。くり返し測定から得た RSD と FUMI 理論により算出された RSD は近い値を示した。



図 3.3.15 精度プロファイル(プロベネシド) ●は実測した RSD(%)、実線は FUMI 理論によ り算出された RSD(%)

#### 4. 結論

ノイズ抽出プロセスを採用することによって、粉末X線回折測定の精度推定にFUMI 理論を適用できると考えられた。

粉末 X 線回折測定におけるノイズパター ンは、試料や実験条件によらず、ホワイトノ イズで近似することができると考えられた。 本検討結果を実用するにあたっては、推定さ れる精度の信頼性向上のため、ノイズ解析を 行う範囲及びデータポイント数について、詳 細な検討を実施すべきであると考えられた。

製剤のような多成分の混合系においても、 添加剤混合物の粉末 X 線回折パターンに、回 折ピークを示さない角度範囲が存在する場 合、FUMI 理論による精度推定が可能である と考えられた。